Brownian Motion - The Brownian Bridge Part I - Base Equations

Gary Schurman, MBE, CFA

August, 2021

In this white paper we will build a Brownian bridge (i.e. a random path) between two known end points. To that end we will work through the following hypothetical problem...

Our Hypothetical Problem

We are tasked with building a Brownian bridge between a start and end point given the following model parameters...

Table 1: Model Parameters

Description	Value
Value of the Brownian motion at time zero	0.00
Value of the Brownian motion at time T	1.35
Time in years (T)	2.00

Task: Graph the mean and variance of the random path between the Brownian motion's start and end points.

Building Our Model

We will define the variable t to be time in years where t can be any value in the time inteval $[t(a), t(b)]$. We will define the variable X_{t} to be the value of the variable X at time t. The variable X is defined as the sum of a deterministic (i.e. non random) function and a random function. The deterministic function is a function of time and the random function is the change in an underlying Brownian motion.

We are given the values of X at the beginning and end of the time interval $[t(a), t(b)]$ and are asked to simulate the random path between the start point and end points. We will define the start point $X_{t(a)}$ and end point $X_{t(b)}$ to be...

$$
\begin{equation*}
a=X_{t(a)} \ldots \text { and... } b=X_{t(b)} \tag{1}
\end{equation*}
$$

We will define the variable W_{t} to be the value of the Brownian motion (the random part of X_{t}) at time t. Using Equation (1) above the equation for the stochastic differential equation (SDE) that defines the change in X_{t} over time is...

$$
\begin{equation*}
\delta X_{t}=\frac{b-X_{t}}{t(b)-t} \delta t+\delta W_{t} \ldots \text { where... } \delta W_{t} \sim N[0, \delta t] \ldots \text { and... } t \in[t(a), t(b)] \tag{2}
\end{equation*}
$$

Note that we can rewrite Equation (2) above as...

$$
\begin{equation*}
\delta X_{t}+\frac{X_{t}}{t(b)-t} \delta t=\frac{b}{t(b)-t} \delta t+\delta W_{t} \tag{3}
\end{equation*}
$$

If we multiply Equation (3) above by $\frac{1}{T-t}$ then that equation becomes...

$$
\begin{equation*}
\frac{\delta X_{t}}{t(b)-t}+\frac{X_{t}}{(t(b)-t)^{2}} \delta t=\frac{b}{(t(b)-t)^{2}} \delta t+\frac{1}{t(b)-t} \delta W_{t} \tag{4}
\end{equation*}
$$

Using Appendix Equation (20) below we can rewrite Eqation (4) above as...

$$
\begin{equation*}
\delta\left(\frac{1}{t(b)-t} X_{t}\right)=\frac{b}{(t(b)-t)^{2}} \delta t+\frac{1}{t(b)-t} \delta W_{t} \tag{5}
\end{equation*}
$$

Integrating both sides of Equation (5) above we get the following equation...

$$
\begin{equation*}
\int_{t(a)}^{t} \delta\left(\frac{1}{t(b)-u} X_{u}\right)=\int_{t(a)}^{t} \frac{b}{(t(b)-u)^{2}} \delta u+\int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u} \tag{6}
\end{equation*}
$$

The solution to Equation (6) above is...

$$
\begin{equation*}
\frac{1}{t(b)-u} X_{u}\left[_{u=t(a)}^{u=t}=\frac{b}{t(b)-u}\left[_{u=t(a)}^{u=t}+\int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u}\right.\right. \tag{7}
\end{equation*}
$$

After applying the bounds of integration to the Equation (7) above the Equation for X_{t} becomes...

$$
\begin{align*}
\frac{1}{t(b)-t} X_{t}-\frac{1}{t(b)-t(a)} X_{t(a)} & =\frac{b}{t(b)-t}-\frac{b}{t(b)-t(a)}+\int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u} \\
\frac{1}{t(b)-t} X_{t} & =\frac{a}{t(b)-t(a)}+\frac{b}{t(b)-t}-\frac{b}{t(b)-t(a)}+\int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u} \\
\frac{1}{t(b)-t} X_{t} & =\frac{b}{t(b)-t}+\frac{a-b}{t(b)-t(a)}+\int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u} \\
X_{t} & =b+\frac{(a-b)(t(b)-t)}{t(b)-t(a)}+(t(b)-t) \int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u} \tag{8}
\end{align*}
$$

Mean and Variance

The expectations applicable to the change in the underlying Brownian motion are...

$$
\begin{equation*}
\mathbb{E}\left[\delta W_{t}\right]=0 \ldots \text { and... } \mathbb{E}\left[\delta W_{t}^{2}\right]=\delta t \ldots \text { and... } \mathbb{E}\left[\delta W_{t} \delta W_{u}\right]=0 \tag{9}
\end{equation*}
$$

Using Equations (8) and (9) above the equation for the mean of the random variable X_{t} is...

$$
\begin{equation*}
\text { mean }=\mathbb{E}\left[b+\frac{(a-b)(t(b)-t)}{t(b)-t(a)}+\frac{1}{t(b)-t} \int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u}\right]=b+\frac{(a-b)(t(b)-t)}{t(b)-t(a)} \quad \ldots \text { because } \ldots \mathbb{E}\left[\delta W_{u}\right]=0 \tag{10}
\end{equation*}
$$

Using Equations (8) and (9) above the equation for the variance of the random variable X_{t} is...

$$
\begin{equation*}
\text { variance }=\mathbb{E}\left[\left((t(b)-t) \int_{t(a)}^{t} \frac{1}{t(b)-u} \delta W_{u}\right)^{2}\right]=\mathbb{E}\left[(t(b)-t)^{2} \int_{u=t(a)}^{u=t} \int_{v=t(a)}^{v=t} \frac{1}{t(b)-u} \frac{1}{t(b)-v} \delta W_{u} \delta W_{v}\right] \tag{11}
\end{equation*}
$$

Note that since $\mathbb{E}\left[\delta W_{t} \delta W_{u}\right]=0$ we can ignore those cases are rewrite Equation (11) above as...

$$
\begin{equation*}
\text { variance }=\mathbb{E}\left[(t(b)-t)^{2} \int_{t(a)}^{t} \frac{1}{(t(b)-u)^{2}} \delta W_{u}^{2}\right]=(t(b)-t)^{2} \int_{t(a)}^{t} \mathbb{E}\left[\frac{1}{(t(b)-u)^{2}} \delta W_{u}^{2}\right]=(t(b)-t)^{2} \int_{t(a)}^{t} \frac{1}{(t(b)-u)^{2}} \delta u \tag{12}
\end{equation*}
$$

Using Appendix Equation (23) below the solution to Equation (12) above is...

$$
\begin{equation*}
\text { variance }=(t(b)-t)^{2} \frac{1}{t(b)-u}\left[_{u=t(a)}^{u=t}=(t(b)-t)^{2}\left(\frac{1}{t(b)-t}-\frac{1}{t(b)-t(a)}\right)=\frac{(t(b)-t)(t-t(a))}{t(b)-t(a)}\right. \tag{13}
\end{equation*}
$$

The Answer To Our Hypothetical Problem

Using Equation (1) above and the parameters in Table 1 above we can make the following definitions...

$$
\begin{equation*}
a=0.00 \ldots \text { and... } b=1.35 \ldots \text { and... } t(a)=0 \ldots \text { and } \ldots t(b)=2 \tag{14}
\end{equation*}
$$

Using the definitions in Equation (17) above our Brownian bridge mean (Equation (10)) and variance (Equation (13)) between $X_{t(a)}$ and $X_{t(b)}$ is...

Table 2: Random Path Mean and Variance

A

t B \begin{tabular}{c}
B

δt

 C mean

D

variance
\end{tabular}

Our graph of the Brownian bridge mean and variance is...

Appendix

A: The derivative of the following equation with respect to time via the quotient rule is...

$$
\begin{align*}
\frac{\delta}{\delta t}\left(\frac{1}{T-t}\right) & =\left[\frac{\delta}{\delta t}(1) \times(T-t)-\frac{\delta}{\delta t}(T-t) \times 1\right] /(T-t)^{2} \\
& =0 \times(T-t)-\frac{1}{(T-t)^{2}} \times-1 \\
& =\frac{1}{(T-t)^{2}} \tag{15}
\end{align*}
$$

B: The derivative of the following equation via the product rule is...

$$
\begin{equation*}
\delta\left(\frac{1}{T-t} X_{t}\right)=\delta\left[\frac{1}{T-t}\right] \times X_{t}+\delta\left[X_{t}\right] \times \frac{1}{T-t} \tag{16}
\end{equation*}
$$

Using Appendix Equation (18) above we can rewrite Equation (19) above as...

$$
\begin{equation*}
\delta\left(\frac{1}{T-t} X_{t}\right)=\frac{\delta X_{t}}{T-t}+\frac{X_{t}}{(T-t)^{2}} \delta t \tag{17}
\end{equation*}
$$

C: We want to solve the following integral...

$$
\begin{equation*}
\int_{0}^{t} \frac{1}{(T-u)^{2}} \delta u \tag{18}
\end{equation*}
$$

Using Equation (18) above the anti-derivative of the integrand in Equation (21) above is

$$
\begin{equation*}
\text { Anti-derivative of } \frac{1}{(T-t)^{2}}=\frac{1}{T-t} \tag{19}
\end{equation*}
$$

Using Equation (22) above the solution to the integral in Equation (21) is...

$$
\begin{equation*}
\int_{0}^{t} \frac{1}{(T-u)^{2}} \delta u=\frac{1}{T-u} \int_{u=0}^{u=t} \tag{20}
\end{equation*}
$$

